ТЕПЛОВОЙ КОНТРОЛЬ. УДАРНОЕ НАГРУЖЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Ахметханов Р.С.

Институт машиноведения им. А.А.Благонравова Российской академии наук, 4,М.Харитоньевкий пер., Москва, 101990, Россия, mibsts@mail.ru

Цель работы – разработка процедур анализа термограмм при ударном контроле с целью выявления дефектов в композиционном материале.

Для оценки особенности тепловых полей использовались статистические данные, мульти-фрактальные спектры, связность Минковского и распределение размеров зон с одинаковы уровнем деформации. Мульти-фрактальные спектры связаны с видом этих распределений.

Рассмотрим термограмму при нанесении удара на пластину из композиционного материала. Локализованные воздействия удара в виде теплового поля и их различия можно увидеть на рисунке 1. Белая точка место нанесения удара.

Рис. 1. Термограммы теплового поля при ударах: а – материала без дефекта; б – материал с дефектом

На рисунке 1а представлен вариант удара без возникновения дефекта. На рис. 1б есть дефект расслоения. При этом тепловое поле не симметрично относительно точки удара.

В таблице приведены статистические данные тепловых полей в случае без дефекта материала и при наличии дефекта. Данные рассчитывались в градациях серого оттенка изображения термограммы.

Таолица - Гаолица статистических дання	ланных
--	--------

Термо- граммы	Сред. квадр. отклонение	Асим- метрия	Эксцесс	Высота пика	Коэф- фициент
					вариа- ции, %
Рис. 1а	0,11115	-1,76655	1,77545	0,062893	34,29
Рис. 1б	0,958160	-2,30518	5,32403	0,041840	30,79

На рис.2 прив приведены изображения мультифрактального спектра, связности Минковского и распределение размеров зон квазиодинаковой темпеартурой.

Рис. 3. Термограмма и характеристики теплового поля: а – статистическое распределение температурных значений в термограмме; б – мульти-фрактальный спектр; в – связность Минковского; г – распределение тепловых зон с похожими значениями температур

Третий вариант удара показан на рис. 4. Максимальные температуры были смещены относительно точки удара. Удар привел к образованию расслоения или расслоение было до этого.

Рис. 4. Гермограмма и характеристики теплового поля: а – термограмма; б – мульти-фрактальный спектр; в – связность Минковского; г – распределение тепловых зон с похожими значениями температур

Рис.2. Термограмма и характеристики теплового поля: а – мульти-фрактальный спектр; б – связность Минковского; в – распределение тепловых зон с похожими значениями температур

Выявлены количественные отличия в пределах от 10% (коэффициент вариации) и до 355% (эксцесс) в случае ударного воздействия по приведенным термограммам для случаев без дефекта и наличии дефекта. Наиболее информативным критерием являются высота пика (температуры), эксцесс и коэффициент вариации.

Мульти-фрактальные спектры отражают свойства структуры материала и наличие дефектов. Эти методы обработки термограмм позволяют выделить дефекты структуры материала и могут использоваться при неразрушающем тепловом контроле.

Работа выполнена при финансировании по гранту РНФ №20-19-00769-П.