О ЧИСЛЕННОМ РЕШЕНИИ ДВУМЕРНОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

Нефедова О.А. a , Спевак Л.Ф. b , Казаков А.Л. c

ИМАШ УрО РАН, д. 34, ул. Комсомольская, г. Екатеринбург, 620034, Российская Федерация e-mail: ^{a)}nefedova@imach.uran.ru, ^{b)}lfs@imach.uran.ru, ^{c)}kazakov@icc.ru

Аннотация Работа посвящена численному решению задачи о движении тепловой волны для вырождающегося нелинейного уравнения второго порядка параболического типа с источником. Нелинейность уравнения обусловлена степенной зависимостью коэффициента теплопроводности от температуры. Рассматривается задача при краевом условии, задающем закон движения фронта тепловой волны. Предложен алгоритм решения, основанный на комбинации методов граничных элементов и коллокаций. Алгоритм реализован в виде программы, написанной на языке программирования С++. Организация параллельных вычислений построена с использованием открытого стандарта ОрепСL.

Постановка краевой задачи В работе рассмотрено вырождающееся нелинейное уравнение параболического типа с источником, заданным функцией $\varphi(u)$,

$$u_{x_1x_1} + u_{x_2x_2} = \frac{1}{u} \left(u_t - \frac{u_{x_1}^2 + u_{x_2}^2}{\sigma} - \varphi(u) \right), \tag{1}$$

при краевом режиме:
$$u \big|_{\mathbf{x} \in S^{(t_k)}} = 0$$
, $q \big|_{\mathbf{x} \in S^{(t_k)}} = \frac{\sigma b_t}{\sqrt{b_{x_1}^2 + b_{x_2}^2}}$. (2)

Уравнение $b(t, x_1, x_2) = 0$ в каждый момент времени определяет нулевой фронт тепловой волны $S^{(t)}$ – замкнутую гладкую линию, ограничивающую область $V^{(t)}$.

Ранее, в других работах, авторами был предложен алгоритм решения A1 задачи (1), (2) на основе методов граничных элементов и двойственной взаимности.

Алгоритм решения А2 Решение задачи выполняется по шагам по времени. В каждый момент времени t_k решение представляется в виде суммы двух функции

$$u(t_{k}, x_{1}, x_{2}) = v(x_{1}, x_{2}) + w(x_{1}, x_{2}), \tag{3}$$

где $v(x_1,x_2)$ — частное решение уравнения (1), а $w(x_1,x_2)$ — решение краевой задачи для уравнения Лапласа: $w_{x_1x_1}+w_{x_2x_2}=0$, (4)

с граничными условиями:
$$w \Big|_{\mathbf{x} \in S^{(t_k)}} = -v \Big|_{\mathbf{x} \in S^{(t_k)}}, \ q_w^{(n)} \Big|_{\mathbf{x} \in S^{(t_k)}} = \frac{\sigma b_t}{\sqrt{b_{x_1}^2 + b_{x_2}^2}} - \frac{\partial v^{(n)}}{\partial n}$$
 (5)

Задача решена итерационно. Задача (4), (5) на каждой итерации решается методом граничных элементов. Частное решение $v(x_1,x_2)$ ищется с помощью разложения неоднородностей уравнения (1) по системе РБФ. Итерационный процесс останавливается на n -ой итерации, когда значения $u^{(n-1)}$ и $u^{(n)}$ достаточно близки.

Программная реализация Была разработана программа, реализующая представленный алгоритм A2. Работа программы была протестирована сравнением результатов расчетов с известными точными решениями и с данными, полученными авторами ранее.

Пример Исследовано уравнение параболического типа с источником вида $\varphi(u)=u$. Результаты расчетов сравнивались с точным решением для нулевого фронта вида: $b(t,x_1,x_2)={x_1}^2+{x_2}^2-r^2(t), \quad r(t)=e^t$. В таблице 1 приведены относительные погрешности численных решений, рассчитанных с помощью разработанного ранее алгоритма A1 и нового алгоритма A2 на внутренней границе для t=1 при 400 граничных элементах и 100 внутренних точках коллокации. В таблице 2 представлено время счета для трех реализаций параллельных вычислений при различных количествах граничных элементов. Расчеты проводились на двухъядерном процессоре, на графическом процессоре, имеющем 720 ядер, и на вычислительном модуле NVIDIA Tesla K40m суперкомпьютера «УРАН» ИММ УрО РАН.

Таблица 1. Относительные погрешности полученных по алгоритмам A1 и A2 численных решений задачи, рассчитанные для момента времени t=1

алг-	относительные погрешности							
TM	h	$f_i = r_i$	$f_i = r_i^3$	$f_i = 1 + r_i$	$f_i = e^{-(\varepsilon r_i)^2}$	$f_i = \sqrt{1 + (\varepsilon r_i)^2}$		
A1	0.1	0.000953	0.000817	0.000750	0.000709	0.000702		
A2	0.1	0.000624	0.000551	0.000516	0.000335	0.000321		
A1	0.05	0.000849	0.000709	0.000673	0.000614	0.000609		
A2	0.05	0.000601	0.000524	0.000488	0.000297	0.000291		

Таблица 2. Время решения задачи для различных реализаций алгоритмов

	алг- тм	кол-во гр.эл-	реализация OpenCL на CPU	реализация OpenCL на ATI Radeon HD	реализация OpenCL на NVIDIA Tesla
		TOB	c SSE, c	5750 GPU, c	K40m, c
Ī	A1	200	62	46	10
Ī	A2	200	21	17	9
Ī	A1	300	126	61	14
Ī	A2	300	59	38	13
	A1	400	269	130	20
	A2	400	135	79	17

Заключение Предложен численный алгоритм A2 решения вырождающегося нелинейного уравнения параболического типа с источником и выполнена его программная реализация. Результаты расчетов показали стабильную сходимость и корректную работу нового метода. Сравнение показывает более высокую точность численных решений по алгоритму A2 по сравнению с разработанным ранее алгоритмом A1 и высокую эффективность распараллеливания A2.