РОССИЙСКАЯ АКАДЕМИЯ НАУК

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ МАШИНОВЕДЕНИЯ УРАЛЬСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИМАШ УрО РАН)

Утверждаю деления Директор ИМАІИ УрО РАН

О.С. Горкунов

2014 г.

РАБОЧАЯ ПРОГРАММА

по дисциплине «Механические свойства материалов и методы их определения» для обучающихся по направлению подготовки 22.06.01 — Технологии материалов по направленности (профилю) подготовки — Материаловедение (по отраслям) (уровень подготовки кадров высшей квалификации)

Форма обучения очная

Оглавление

- 1. Общие положения
- 2. Цели изучения дисциплины
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- 4. Содержание дисциплины
 - 4.1 Объем дисциплины и количество учебных часов
 - 4.2 Содержание лекционных занятий
 - 4.3 Практические занятия
 - 4.4 Другие виды учебной работы
 - 4.5 Самостоятельная работа аспиранта
- 5. Перечень контрольных мероприятий
- 6. Учебно-методическое и информационное обеспечение дисциплины
 - 6.1 Основная литература
 - 6.2 Дополнительная литература
- 7. Материально-техническое обеспечение

1.Общие положения

Программа разработана на основании Федеральных государственных требований к структуре основной профессиональной образовательной программы послевузовского профессионального образования для обучающихся в аспирантуре (адъюнктуре), утвержденных Приказом Минобрнауки РФ от 16.03.2011 г. № 1365, с изменениями от 29.08.2011 г.; Положении о подготовке научно-педагогических и научных кадров в системе послевузовского профессионального образования в Российской Федерации, утвержденного Приказом Минобразования России от 27.03.1998 № 814 с изменениями, внесенными приказами от 16.03.2000 № 780, от 27.11.2000 № 3410, от 17.02.2004 № 696; Инструктивного письма Минобрнауки РФ № ИБ-733/12 от 22.06.2011 г. «О формировании основных образовательных программ послевузовского профессионального образования», Приказом Министерства образования и науки РФ от 19.11.2013 г. №1259 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования, программами подготовки научно- педагогических кадров в аспирантуре (адъюнктуре)», Приказом Министерства образования и науки РФ от 30.04.2015 г. № 464 «О внесении изменений в федеральные государственные образовательные стандарты высшего образования (уровень подготовки кадров высшей квалификации)».

2. Цели и задачи изучения дисциплины

Цель изучения дисциплины — формирование у аспиранта (соискателя) инженерного мышления в области механики; формирование знаний, умений и навыков по исследованию механических свойств материалов; на основе теоретических представлений о дефектах кристаллов научить связывать механические свойства металлов с атомным механизмом фазовых превращений, деформации, упрочнения и разрушения; научить анализировать и прогнозировать зависимость процессов деформации и разрушения и механических свойств сплавов и соединений от их микроструктуры, фазового состояния и состава.

Задачи дисциплины:

- знакомство с важнейшими понятиями материаловедения;
- изучение теоретических основ, приемов и методов механики сплошной среды;
- рассмотрение закономерностей формирование структуры и свойств материалов, механизма разрушения в различных условиях;
- ознакомление с методами и критериями оценки механических свойств материалов;

3. Компетенции обучающегося, формируемые в результате освоения лиспиплины

Аспиранты (соискатели), завершившие изучение данной дисциплины, должны. должен обладать следующими универсальными компетенциями:

способностью к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях(УК-1);

способностью проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки(УК-2);

готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно – образовательных программ (УК-3);

способностью планировать и решать задачи собственного профессионального и личностного развития (УК-6).

Выпускник, освоивший программу дисциплины, должен обладать следующими общепрофессиональными компетенциями:

проектно-конструкторская деятельность:

способностью и готовностью теоретически обосновывать и оптимизировать технологические процессы получения перспективных материалов и производство из них новых изделий с учетом последствий для общества, экономики и экологии (ОПК-1);

способностью и готовностью разрабатывать и выпускать технологическую документацию на перспективные материалы, новые изделия и средства технического контроля качества выпускаемой продукции (ОПК-2);

способностью и готовностью выполнять нормативные требования, обеспечивающие безопасность производственной и эксплуатационной деятельности (ОПК-4);

способностью и готовностью использовать на практике интегрированные знания естественнонаучных, общих профессионально-ориентирующих и специальных дисциплин для понимания проблем развития материаловедения, умение выдвигать и реализовывать на практике новые высокоэффективные технологии (ОПК-5);

научно-исследовательская деятельность:

способностью и готовностью обрабатывать результаты научно-исследовательской работы, оформлять научно-технические отчеты, готовить к публикации научные статьи и доклады (ОПК-8);

способностью и готовностью разрабатывать технические задания и программы проведения расчетно-теоретических и экспериментальных работ (ОПК-9);

способностью выбирать приборы, датчики и оборудование для проведения экспериментов и регистрации их результатов (ОПК-10);

производственно-технологическая:

способностью и готовностью разрабатывать технологический процесс, технологическую оснастку, рабочую документацию, маршрутные и операционные технологические карты для изготовления новых изделий из перспективных материалов (ОПК-11);

способностью и готовностью участвовать в проведении технологических экспериментов, осуществлять технологический контроль при производстве материалов и изделий (ОПК-12);

способностью и готовностью участвовать в сертификации материалов, полуфабрикатов, изделий и технологических процессов их изготовления (ОПК-13);

способностью и готовностью оценивать инвестиционные риски при реализации инновационных материаловедческих и конструкторско-технологических проектов и внедрении перспективных материалов и технологий (ОПК-14);

организационно-управленческая:

способностью и готовностью организовывать работы по совершенствованию, модернизации, унификации выпускаемых изделий, их элементов, разрабатывать проекты стандартов и сертификатов, проводить сертификацию материалов, технологических процессов и оборудования, участвовать в мероприятиях по созданию системы качества (ОПК-16);

способностью и готовностью вести авторский надзор при изготовлении, монтаже, наладке, испытаниях и сдаче в эксплуатацию выпускаемых материалов и изделий (ОПК-18);

готовностью к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-19).

Выпускник, освоивший программудисциплины, должен обладать следующими профессиональными компетенциями:

готовностью к выявлению проблематики, способностью, с использованием научного подхода к ее решению и внедрению результатов исследования в области материаловедения(ПК-2);

способностью к критическому анализу, оценке и синтезу новых идей в области материаловедения(ПК-3);

способностью осуществлять сбор, обработку, анализ и систематизацию информации по теме исследования, выбор материалов и средств решения задач исследований(ПК-4);

способностью и готовностью представлять результаты своей научно-исследовательской деятельности научно-техническому сообществу(ПК-5);

Связь с предшествующими дисциплинами

Дисциплина «Механические свойства материалов и методы их определения» относится к завершающим дисциплинам базовой части основной образовательной программы. Для изучения дисциплины аспирант должен обладать базовыми знаниями в области математики, физики, химии, информационных технологий, а так же в основах научных исследований, организации и планировании эксперимента.

Связь с последующими дисциплинами

Знания и навыки, полученные аспирантами при изучении данного курса, необходимы при подготовке и написании диссертации по специальности 05.16.09 — Материаловедение (в машиностроение).

4. Содержание дисциплины

4.1 Объем дисциплины и количество учебных часов

Форма обучения (виды отчетности) 3 год аспирантуры; вид отчетности - экзамен

Вид учебной работы	Объем часов/
	зачетных единиц
Трудоемкость изучения дисциплины	72/2
Обязательная аудиторная учебная нагрузка (всего)	16
в том числе:	
Лекции	8
Практические занятия	8
Самостоятельная работа аспиранта (всего)	56
в том числе:	
Самостоятельное изучение теоретического материала	56
Вид отчетности	зачет

Разделы дисциплины и виды занятий

№	Название раздела	Объем часов / зачетных единиц		
п/п	дисциплины	лекции	практические	самостоятельная
			занятия	работа
1	Схемы напряженного и деформированного состояний материалов	1	1	6
2	Упругие свойства материалов	1	-	7
3	Пластическая деформация и деформационное упрочнение	1	-	7
4	Разрушение материалов	1	1	6
5	Механические свойства материалов и методы их определения	2	4	18

6	Поведение материалов под нагрузкой при охлаждении и нагреве		1	6
7	Воздействие внешней среды	1	1	6
	Итого:	8	8	56

4.2 Содержание лекционных занятий

- 1. Схемы напряженного и деформированного состояний материалов.
- Плоское и объемное напряженные состояния. Плоская деформация. Концентрация напряжений. Остаточные напряжения, определение, классификация.
 - 2. Упругие свойства материалов.

Модуль упругости и его зависимость от кристаллической структуры материала. Упругое последствие, упругий гистерезис, внутреннее трение.

3. Пластическая деформация и деформационное упрочнение.

Процессы скольжения и двойникования. Краевые, винтовые и смешанные дислокации. Вектор Бюргерса. Скольжение и переползание дислокаций. Взаимодействие дислокаций между собой и с примесями. Особенности деформации монокристаллов и поликристаллов. Влияние границ зерен на пластическую деформацию поликристаллов. Дисклинации. Сверхпластичность. Влияние пластической деформации на структуру и свойства материалов. Механизм упрочнения. Деформационное упрочнение. Упрочнение твердых растворов при взаимодействии дислокаций с примесями внедрения. Дисперсионное твердение.

4. Разрушение материалов.

Виды разрушения материалов. Механизмы зарождения трещин. Силовые, деформационные и энергетические критерии локального разрушения. Трещиностойкость. Подходы механики разрушения к выбору конструкционных материалов, расчету размера допустимого дефекта и прогнозированию долговечности. Фрактография как метод количественной оценки механизма разрушения.

5. Механические свойства материалов и методы их определения.

Классификация методов механических испытаний. Значение механических характеристик в материаловедении. Механические свойства, определяемые при статическом нагружении. Испытания на растяжение, сжатие, изгиб, кручение, трещиностойкость. Влияние легирования, структуры концентраторов напряжений и масштабного фактора на характеристики механических свойств. Механические свойства, определяемые при динамическом нагружении. Влияние скорости деформирования на характеристики прочности и пластичности. Динамические испытания на изгиб образцов. Ударная вязкость. Методы определения ударной вязкости и ее составляющих. Механические свойства, определяемые при циклическом нагружении. Усталость, диаграммы усталости, предел выносливости. Малоцикловая и многоцикловая усталость. Природа усталостного разрушения. Влияние различных факторов на сопротивление усталости. Испытания на твердость вдавливанием и царапанием. Триботехнические испытания.

- 6. Поведение материалов под нагрузкой при охлаждении и нагреве.
- Поведение материалов под нагрузкой при охлаждении от комнатных температур до криогенных. Хладостойкость и критическая температура хрупкости, методы определения. Поведение материалов под нагрузкой при нагреве от комнатных температур до температуры рекристаллизации и выше. Синеломкость и тепловая хрупкость. Жаростойкость и жаропрочность. Ползучесть, диаграммы ползучести, предел ползучести. рекристаллизационной ползучести. Длительная прочность, диаграммы длительной прочности, предел длительной прочности. Механизм хрупкого разрушения при ползучести. Релаксация напряжений, диаграммы релаксации, релаксационная стойкость. Влияние легирования и структуры на характеристики жаропрочности материалов.
 - 7. Воздействие внешней среды.

Адсорбционные процессы при деформации и разрушении металлов. Эффект Ребиндера. Влияние поверхностноактивных сред на прочность металлов и сплавов. Закономерности

окисления металлов. Коррозия металлов и сплавов под напряжением. Коррозионное растрескивание. Межкристаллитная коррозия. Сопротивляемость материалов кавитационному и эрозионному разрушению. Влияние радиационного облучения на строение и свойства материалов.

4.3 Практические занятия

Практические занятия— метод репродуктивного обучения, обеспечивающий связь теории и практики, содействующий выработке у студентов умений и навыков применения знаний, полученных на лекции и в ходе самостоятельной работы. Практические занятия представляют собой занятия по решению различных прикладных задач, образцы которых были даны на лекциях. В итоге у каждого обучающегося должен быть выработан определенный профессиональный подход к решению каждой задачи и интуиция. Лекция является первым шагом подготовки студентов к практическим занятиям. Далее следует самостоятельная подготовка. Проблемы, поставленные в лекции и при самостоятельном изучении раздела дисциплины, на практическом занятии приобретают конкретное выражение и решение. Каждое практическое занятие, является развивающим и закрепляющим, а так же помогает аспирантам в возникших вопросах при самостоятельном обучении.

Практические занятия

Номер и название раздела (темы)	Наименование практических занятий	
Схемы напряженного и	Работа 1. Основные понятия.	
деформированного состояний материалов		
Разрушение материалов	Работа 2. Механизмы зарождения трещин.	
	Трещиностойкость.	
Механические свойства материалов и	Работа 3. Классификация методов механических	
методы их определения	испытаний.	
	Работа 4. Механические свойства, определяемые	
	при статическом нагружении.	
	Работа 5. Механические свойства, определяемые	
	при динамическом нагружении.	
Поведение материалов под нагрузкой при	Работа 6. Поведение материалов под нагрузкой:	
охлаждении и нагреве	синеломкость, тепловая хрупкость, жаростойкость,	
	жаропрочность, ползучесть, диаграммы	
	ползучести, длительная прочность, релаксация	
	напряжений.	
Воздействие внешней среды	Работа 7. Коррозия металлов и сплавов	

4.4 Другие виды учебной работы

Другие виды учебной работы не предусмотрены учебным планом.

4.5 Самостоятельная работа аспиранта

Характеристика всех видов и форм самостоятельной работы студентов, включая текущую и творческую/исследовательскую деятельность студентов:

Текущая самостоятельная работа аспиранта, направленная на углубление и закрепление знаний, развитие практических умений заключается в следующем:

- работа с лекционным материалом, поиск литературы и электронных источников информации по проблеме курса,

- опережающая самостоятельная работа,
- изучение тем, вынесенных на самостоятельную проработку,
- подготовка к практическим занятиям,
- подготовка к зачету.

Творческая проблемно-ориентированная самостоятельная работа, ориентированная на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала аспиранта включает:

- поиск, анализ, структурирование информации,
- обработку экспериментальных данных,
- подготовку презентаций по темам практических занятий.

5. Перечень контрольных мероприятий

По завершении изучения данной дисциплины обучаемые обязаны сдать зачет. Основная цель зачета - выявить степень владения знаниями о механических свойствах материалов и методах их определения. В содержание зачета входит беседа с экзаменаторами по информации из лекционных курсов. В результате ставится ЗАЧЕТ/ НЕЗАЧЕТ.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1 Основная литература

- 1. Механические свойства металлов: учебное пособие/ М. Л. Берштейн, В. А. Займовский. М., 1979.-495 с.
- 2. Золоторевский В.С. Механические свойства металлов М., 1983. 352 с.
- 3. Лившиц Б. Г., Крапошин В. С., Линецкий Я. Л. Физические свойства металлов и сплавов: учебник / Под ред. Б. Г. Лившица. 2-е изд., доп. и перераб. М.: Металлургия, 1980. 314 с.
- 4. Бушманов Б.Н., Хромов Ю.А. Физика твердого тела: учебное пособие М, 1971. 224 с.
- 5. Павлов П.В., Xохлов А.Ф. Физика твердого тела. M., 2000. 494c.
- 6. Физика твердого тела. / Под ред. И.К. Верещагина M., 2001. 237c.

6.2 Дополнительная литература

- 7. Золоторевский В.С. Механические испытания и свойства металлов. М., 1974.
- 8. Хоникомб Р. Пластическая деформация металлов. М., 1972.
- 9. Тимошук Л.Т. Механические испытания металлов. М., 1971.
- 10. Фридман Я.Б. Механические свойства металлов: в 2 ч М., 1974.
- 11. Физика твердого тела. Лабораторный практикум. / Под ред. А.Ф. Хохлова. Том II. Физические свойства твердых тел. М., 2001. 484с.
- 12. Киттель Ч. Введение в физику твердого тела: Пер. с англ. / Ч. Киттель. М., 1978. 791с.
- 13. Лифшиц И. М, Азбель М. Я., Каганов М. И. Электронная теория металлов. М.: Наука, 1971.-416 с.

Программное обеспечение и *Internet*-ресурсы:

http://www.materialscience.ru/

http://elibrary.ru/

http://portal.tpu.ru/SHARED/m/MSV

7. Материально-техническое обеспечение

ИМАШ УрО РАН обладает материально-технической базой, соответствующей действующим санитарно-техническим нормам и обеспечивающей проведение всех видов теоретической и практической подготовки, предусмотренных учебным планом аспиранта, а также эффективное выполнение диссертационной работы.

Материально-техническая база представлена четырьмя научно-техническими лабораториями, оснащенными следующим оборудованием.

— Оборудование для механических и трибологических испытаний: сервогидравлическая испытательная система "Instron 8801", копер маятниковый "IT 542", универсальная испытательная машина "Zwick Z2.5", система для измерения микротвердости "Fisherscope HM2000 XYm", микротвердомер "ПМТ-3", микротвердомер "Leica VMHT AUTO", прецизионный высокотемпературный твердомер "AVK-HF", многофункциональный комплекс "TriboIndenter TI 950", машина для испытания материалов на трение и износ "2070 СМТ-1".

— Технологическое оборудование: рокатный стан "Луо/Кварто" мини стан

прокатный стан "Дуо/Кварто", мини станы для волочения проволоки, ультразвуковая установка для упрочняюще-чистовой обработки "Ил-4/1-2.0", вакуумная электропечь "СНВЭ-9/18", электропечи термические и сушильный шкаф, стенд для исследования термоциклических долговечности и ползучести материалов в газовых средах.

ИМАШ УрО РАН располагает достаточным количеством компьютеров, обеспечивающих учебный процесс. Институт имеет локальную сеть с выходом в Интернет. Поддерживается собственный сайт http://www.imach.uran.ru//, электронная почта.

Рабочая программа по дисциплине «Механические свойства материалов и методы их определения» для обучающихся по направлению подготовки 22.06.01 — Технологии материалов по направленности (профилю) подготовки — Материаловедение (по отраслям)рассмотрена ученым советом ИМАШ УрО РАН «3» июля 2014 г., протокол № 5 и рекомендована к утверждению.

Составители рабочей программы

Зав. лаборатории конструкционного материаловедения, д.т.н.

Зав. лаборатории микромеханики материалов, д.т.н.

Макаров А.В.

Смирнов С.В.

Зав. аспирантурой, к.т.н.

Cyp

Субачев Ю.В.