Казаков А. Л. Кузнецов П.А. Спевак Л.Ф. Задача об инициировании диффузионной волны для нелинейной параболической системы второго порядка // Труды Института математики и механики УрО РАН. 2023. Т. 29. № 2. С. 67–86. [10.21538/0134-4889-2023-29-2-67-86].
Нефедова О.А. Спевак Л.Ф. Казаков А. Л. Ли М.Г. Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности // Компьютерные исследования и моделирование. 2023. Т. 15. № 6. С. 1449–1467. [10.20537/2076-7633-2023-15-6-1449-1467].
Казаков А. Л. Кузнецов П.А. Спевак Л.Ф. О некоторых решениях с нулевым фронтом эволюционной параболической системы // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. 2023. Т. 224. С. 80–88. [10.36535/0233-6723-2023-224-80-88].
Спевак Л.Ф. Нефедова О.А. Численное решение двумерного нелинейного уравнения теплопроводности с использованием радиальных базисных функций // Компьютерные исследования и моделирование. 2022. Т. 14. № 1. С. 9-22. [ 10.20537/2076-7633-2022-14-1-9-22].
Казаков А. Л. Спевак Л.Ф. Решения нелинейной вырождающейся системы реакция - диффузия типа диффузионных волн с двумя фронтами // Прикладная механика и техническая физика. 2022. Т. 63. № 6. С. 104-115. [10.15372/PMTF20220612].
Казаков А. Л. Кузнецов П.А. Спевак Л.Ф. Построение решений краевой задачи с вырождением для нелинейной параболической системы // Сибирский журнал индустриальной математики. 2021. Т. 24. № 4 (88). С. 64-78. DOI: 10.33048/SIBJIM.2021.24.405. список ВАКесть перевод
Казаков А. Л. Кузнецов П.А. Спевак Л.Ф. О решениях типа бегущей волны для нелинейного уравнения теплопроводности // Итоги науки и техники. Серия. Современная математика и ее приложения. Тематические обзоры. 2021. Т. 196. С. 36–43. https://doi.org/10.36535/0233-6723-2021-196-36-43.
Казаков А. Л. Спевак Л.Ф. Точные и приближенные решения вырождающейся системы реакция-диффузия // Прикладная механика и техническая физика. 2021. Т. 62. № 4. С. 169-180. DOI: 10.15372/PMTF20210417. список ВАКесть перевод
Казаков А. Л. Спевак Л.Ф. О точных и приближенных решениях задачи с особенностью для уравнения конвекции-диффузии // Прикладная механика и техническая физика. 2021. Т. 62. № 1. С. 22–31. DOI: 10.15372/PMTF20210103. список ВАКесть перевод
Казаков А. Л. Спевак Л.Ф. Точные и приближенные решения вырождающейся системы реакция-диффузия // Прикладная механика и техническая физика. 2021. Т. 62. № 4. С. 169-180. DOI: 10.15372/PMTF20210417. список ВАКесть перевод
Казаков А. Л. Спевак Л.Ф. Минг-Гонг Ли О построении решений задачи со свободной границей для нелинейного уравнения теплопроводности // Журнал Сибирского федерального университета. Серия: Математика и физика. 2020. Т. 13. № 6. С. 694-707. список ВАКесть перевод
Казаков А. Л. Спевак Л.Ф. Приближенные и точные решения вырождающегося нелинейного уравнения теплопроводности с произвольной нелинейностью // Известия Иркутского государственного университета. Серия “Математика”. 2020. Т. 34. № 4. С. 18-34. https://doi.org/10.26516/1997-7670.2020.34.18. список ВАКесть перевод
Казаков А. Л. Нефедова О.А. Спевак Л.Ф. Решение задач об инициировании тепловой волны для нелинейного уравнения теплопроводности методом граничных элементов // Журнал вычислительной математики и математической физики. 2019. Т. 59. № 6. С. 1047–1062. DOI: 10.1134/S0044466919060085. список ВАКесть перевод
Казаков А. Л. Кузнецов П.А. Спевак Л.Ф. Трехмерная тепловая волна, порожденная краевым режимом, заданным на подвижном многообразии // Известия Иркутского государственного университета. Серия Математика. 2018. Т. 26. С. 16-33. DOI: https://doi.org/10.26516/1997-7670.2018.26.16. список ВАК
Просвиряков Е.Ю. Спевак Л.Ф. Пространственно неоднородные слоистые течения вязкой несжимаемой жидкости // Теоретические основы химической технологии. 2018. Т. 52. № 5. С. 483-488. список ВАК
Аристов С.Н. Просвиряков Е.Ю. Спевак Л.Ф. Нестационарная конвекция Бенара-Марангони слоистых течений вязкой несжимаемой жидкости // Теоретические основы химической технологии. 2016. Т. 50. № 2. С. 137-146.
Казаков А. Л. Спевак Л.Ф. Нефедова О.А. Решение двумерной задачи о движении фронта тепловой волны с использованием степенных рядов и метода граничных элементов // Известия Иркутского государственного университета. Серия “Математика”. 2016. Т. 18. С. 21-37.
Казаков А. Л. Спевак Л.Ф. О подходах к численному решению нелинейного уравнения теплопроводности // Вестник УрГУПС. 2015. № 2(26). С. 13-20.
Горшков А.В. Спевак Л.Ф. Решение трехмерных задач деформирования неоднородных областей методом разделения переменных, основанным на вариационной постановке // Международный журнал прикладных и фундаментальных исследований. 2015. № 6. С. 218-223.
Казаков А. Л. Кузнецов П.А. Спевак Л.Ф. Об одной краевой задаче с вырождением для нелинейного уравнения теплопроводности в сферических координатах // Труды Института математики и механики УрО РАН. 2014. Т. 20. № 1. С. 119-129.
Федотов В.П. Спевак Л.Ф. Нефедова О.А. Программный комплекс для решения задач теории потенциала методом граничных элементов // Программные продукты и системы. 2014. №4.
Казаков А. Л. Спевак Л.Ф. Численное исследование одной модели механики сплошной среды на основе нелинейного параболического уравнения с вырождением // Вестник КГТУ им. А.Н. Туполева. 2013. №1. С. 103-109.
Спевак Л.Ф. Казаков А. Л. Численное решение краевой задачи для нелинейного вырождающегося параболического уравнения в случаях круговой и сферической симметрии // Вестник КГТУ им. А.Н. Туполева. 2013. №3.
Колмогоров В.Л. Спевак Л.Ф. Чурбаев Р.В. Определение ресурса пластичности металла при высокоскоростном деформировании в условиях высокого давления // Деформация и разрушение материалов. 2013. №4. С. 2-8.
Федотов В.П. Спевак Л.Ф. Нефедова О.А. Моделирование процессов упругопластического деформирования модифицированным методом граничных элементов // Программные продукты и системы. 2013. №4. С. 253-257.
Казаков А.Л. Спевак Л.Ф. Аналитическое решение краевой задачи для нелинейного вырождающегося параболического уравнения // Вестник Казанского государственного технического университета им. А.Н. Туполева. 2012. №4.
Казаков А.Л. Спевак Л.Ф. Методы граничных элементов и степенных рядов в одномерных задачах нелинейной фильтрации // Известия Иркутского государственного университета. 2012. №2. С. 2-18.
Миронов В.И. Спевак Л.Ф. Трухин В.Б. Модель циклической деградации материала в расчете долговечности составного диска // Известия Самарского научного центра Российской Академии Наук. 2012. Т.14. №6.
Кандоба И.Н. Спевак Л.Ф. Тарико О.С. Анализ напряженно-деформированного состояния в неоднородных конструкциях // Программные продукты и системы. 2012. №1. С. 69-75.
Федотов В.П. Спевак Л.Ф. Нефедова О.А. Параллельные алгоритмы для анализа прочности наводороженных конструкций // Программные продукты и системы. 2012. №3. С. 235-239.
Колмогоров В.Л. Федотов В.П. Спевак Л.Ф. Применение модифицированного метода граничных элементов и вариационных принципов для решения задач упругопластического деформирования // Упругость и неупругость. 2011. С. 472-473.
Колмогоров В.Л. Федотов В.П. Спевак Л.Ф. Применение метода разделения переменных, основанного на вариационной постановке для расчета напряженно-деформированного состояния в неоднородном теле // , Екатеринбург, 24-28 мая // Материалы VI Российской научно-технической конференции “Механика микронеоднородных материалов и разрушение” (Электронный оптический диск). Екатеринбург: ИМАШ УрО РАН, 2010.
Федотов В.П. Спевак Л.Ф. Модифицированный метод граничных элементов в задачах механики, теплопроводности и диффузии. Екатеринбург: УрО РАН, 2009. 164 с. подробнее>>
Федотов В.П. Спевак Л.Ф. Применение модифицированного метода граничных элементов для решения задач нелинейно-упругого деформирования // Вестник Самарского государственного технического университета. Серия: Физ.-мат. науки. 2008. №2(17). С. 118–125.
Федотов В.П. Спевак Л.Ф. Аналитическое интегрирование функций влияния для решения задач упругости и теории потенциала методом граничных элементов // Математическое моделирование. 2007. Т. 19. №2. С. 87-104.
Федотов В.П. Спевак Л.Ф. Решение связных диффузионно-деформационных задач на основе алгоритмов параллельного действия. Екатеринбург: УрО РАН, 2007. ISBN 5-7691-1807-5. 172 с. подробнее>>
Федотов В.П. Спевак Л.Ф. Трухин В.Б. Вычисление напряжений в методе граничных элементов с использованием аналитического вычисления интегралов // Вестник Самарского государственного технического университета. Серия: Физ.-мат. науки. 2007. № 2 (15). С. 79–84.
Федотов В.П. Привалова В.В. Спевак Л.Ф. Модификация метода граничных элементов для упругих задач с дефектами // Наука и технологии. Тезисы докладов XXVII Российской школы, посвящённой 150-летию К.Э. Циолковского, 100-летию С.П. Королева и 60-летию Государственного Ракетного центра «КБ им. Акад. В.П. Макеева». Миасс: МСНТ, 2007. 90 с.
Привалова В.В. Федотов В.П. Спевак Л.Ф. Модификация метода граничных элементов для трёхмерных задач теории упругости // Вестник УГТУ-УПИ (Механика микронеоднородных материалов и разрушение). Екатеринбург: УГТУ-УПИ, 2006. № 22(52). С. 109–114.
Колмогоров В.Л. Федотов В.П. Спевак Л.Ф. Н.А. Бабайлов Трухин В.Б. Решение нестационарных температурных и термомеханических задач методом разделения переменных в вариационной постановке // Вестник Самарского государственного технического университета. Серия: Физ.-мат. науки. 2006. Вып. 42. С. 72–75.
Федотов В.П. Спевак Л.Ф. К аналитическому вычислению интегралов в численно-аналитическом методе решения задач математической физики // Вестник Самарского государственного технического университета. Серия: Физ.-мат. науки. 2006. Вып. 43. С. 92–99.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Трухин В.Б. Solving Two- And Three-Dimensional Elastic Problems by Modified Boundary Element Method // XXXIV Summer School – Conference “Advanced Problems in Mechanics”. Book of abstracts. St. Petersburg, 2006. 33 с.
Привалова В.В. Спевак Л.Ф. Федотов В.П. Модифицированный метод граничных элементов для решения задач теории упругости // Аннотации докладов IX Всероссийский съезд по теоретической и прикладной механике, Т. 3. Нижний Новгород: издательство Нижегородского госуниверситета им. Н.И.Лобачевского, 2006. 177 с.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Модификация метода граничных элементов для решения упругих задач // Тезисы докладов IV Всероссийского научного семинара памяти С.Д.Волкова «Механика микронеоднородных материалов и разрушение». Екатеринбург: УГТУ-УПИ, 2006. 62 с.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Модификация метода граничных элементов для моделирования трёхмерных упругих задач // Труды третьей Всероссийской научной конференции «Математическое моделирование и краевые задачи», часть 1. Самара: СамГТУ, 2006. С. 231- 234.
Федотов В.П. Спевак Л.Ф. Трухин В.Б. Привалова В.В. A Numerical-Analytical Technique Technique for solving problems of Mathematical physics // XXXIII Summer School – Conference “Advanced Problems in Mechanics”. Book of abstracts. St. Petersburg, 2005. С. 41-42.
Федотов В.П. Горшков А.В. Привалова В.В. Спевак Л.Ф. Решение задач теории упругости с помощью алгоритмов параллельного действия // Тезисы докладов 19 Всероссийской конференции по численным методам решения задач теории упругости и пластичности. Бийск, 2005.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Т.Д. Думшева Е.С. Зенкова Моделирование трехмерных задач упругости и диффузии для контроля надежности элементов конструкций // Тезисы докладов XVII Российской научно-технической конференции “Неразрушающий контроль и диагностика”, 5-11 сентября. Екатеринбург, 2005. 197 с.
Федотов В.П. Привалова В.В. Спевак Л.Ф. Математическое моделирование краевых задач упругости и диффузии с помощью параллельных алгоритмов // Труды Второй Всероссийской научной конференции «Математическое моделирование и краевые задачи». Самара: СамГТУ, 2005. Ч.1. С. 287–290.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Трухин В.Б. Решение задач деформирования с использованием параллельных алгоритмов // Вестник УГТУ-УПИ (Механика неоднородных материалов и разрушение). Екатеринбург: УГТУ-УПИ, 2004. № 22(52). С. 113 –118.
Федотов В.П. Спевак Л.Ф. Трухин В.Б. Привалова В.В. Т.Д. Думшева Е.С. Зенкова Исследование сходимости численно-аналитического метода решения задач упругости, теплопроводности и диффузии // Вестник Самарского государственного технического университета. Серия: Физ.-мат. науки. 2004. Вып. 30. С. 55–62.
Федотов В.П. Спевак Л.Ф. T.D.Dumsheva E.S.Zenkova Привалова В.В. Numerical - analytical method for solving problems of elasticity and heat conductivity // XXXII Summer School – Conference “Advanced Problems in Mechanics”. Book of abstracts. St. Petersburg, 2004. С. 43-44.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Трухин В.Б. Решение задач деформирования с использованием параллельных алгоритмов // Тезисы докладов III всероссийского научного семинара им. С.Д.Волкова «Механика микронеоднородных материалов и разрушение». Екатеринбург: УГТУ-УПИ, 2004. 68 с.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Трухин В.Б. Решение двумерных и трехмерных задач теории упругости с использованием параллельных алгоритмов вычислений // Труды Всероссийской научной конференции «Математическое моделирование и краевые задачи».. Самара: СГТУ, 2004. С. 237-242.
Колмогоров В.Л. Спевак Л.Ф. Бабайлов Н.А. Трухин В.Б. Об одном методе решения задач теплопроводности // “Инновации в машиностроении”: Сб. статей IV Всероссийской научно-практич. конференции. Пенза: Приволжский дом знаний, 2004. С. 64–67.
Думшева Т.Д. Зенкова Е.С. Федотов В.П. Спевак Л.Ф. Привалова В.В. Численно-аналитический алгоритм для решения задач упругости, теплопроводности, диффузии // Сб. науч. тр. «Алгоритмы и программные средства параллельных вычислений». Екатеринбург: УрО РАН, 2003. Вып. 7. С. 70–86.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Численно-аналитический метод для задач упругости и теплопроводности // Материалы науч.-техн. конф. «Проблемы и перспективы развития железнодорожного транспорта». Екатеринбург: УрГУПС, 2003. т. IV. С. 234–241.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Думшева Т.Д. Зенкова Е.С. Решение двумерных задач теории упругости с использованием параллельных алгоритмов вычислений // Тезисы всероссийской конференции «Высокопроизводительные вычисления и технологии». Ижевск, 2003. С. 142-147.
Федотов В.П. Спевак Л.Ф. Привалова В.В. Параллельные алгоритмы для задач деформирования и разрушения // Тезисы докладов международной конференции «Разрушение и мониторинг свойств металлов». Екатеринбург: ИМАШ УрО РАН, 2003. С. 21-22.
Спевак Л.Ф. Трухин В.Б. Бабайлов Н.А. Численное моделирование процессов деформирования и разрушения твердых тел // “Современные технологии в машиностроении - 2003”: Сб. статей VI Всероссийской научно-практич. конференции. Пенза: Приволжский дом знаний, 2003. 179 –182.
Колмогоров В.Л. Спевак Л.Ф. Бабайлов Н.А. Плотников А.Ю. К решению краевых задач течения материалов // Межвуз. сб. “Проблемы механики деформируемого твердого тела”. Санкт-Петербург: СпбГУ, 2002. С. 179–185.
Спевак Л.Ф. Моделирование динамического деформирования и разрушения плоских и осесимметричных тел // Автореферат дисс. … канд. техн. наук. Екатеринбург: ИМаш УрО РАН, 2002. 20 с.
Спевак Л.Ф. Залазинская Е.А. Определение закона движения твердой частицы в пластической среде // В сб. статей: Механика деформирования и разрушения. Екатеринбург: УрО РАН, 2001. С. 31–51.
Федотов В.П. Спевак Л.Ф. Вариационный метод разделения переменных для задач пластического удара // Известия УрГУ (Математика и механика. Вып. 3). Екатеринбург: УрГУ, 2000. №18. С. 185–196.
Федотов В.П. Спевак Л.Ф. Решение динамических задач пластичности основанным на вариационной постановке методом разделения переменных // Математическое моделирование. 2000. Т. 12. №7. С. 36–40.
Колмогоров В.Л. Федотов В.П. Спевак Л.Ф. и др. Метод решения задач развитого деформирования и разрушения. Программа. Примеры // Вестник Самарского государственного аэрокосмического университета. Металлофизика и деформирование перспективных материалов. Самара: СГАУ, 1999. С. 29–54.
Гасилов В.Л. Спевак Л.Ф. Модель разрушения в процессах развитого деформирования металлов // Прочность и пластичность, //Труды IX Конференции по прочности и пластичности. Москва, 1996. №2. С. 58–63.
Колмогоров В.Л. Спевак Л.Ф. Трухин В.Б. Метод расчета напряженно-деформированного состояния в общей краевой задаче обработки металлов // Технология легких сплавов. 1995. №4. С. 39–49.
Колмогоров В.Л. Горшков А.В. Спевак Л.Ф. Трухин В.Б. Применение метода расчета напряженно-деформированного состояния для некоторых задач обработки металлов давлением // 10 зимняя школа по механике сложных сред. Тезисы докладов. Пермь, 1995. С. 59-60.
Спевак Л.Ф. Сходимость метода “переменных коэффициентов” при решении задач теории ОМД // Межвузовский сборник научных трудов “Обработка металлов давлением”. Свердловск: УПИ, 1990. С. 29-33.